Nosocomial Bacteremia Due to an As Yet Unclassified \textit{Acinetobacter} Genomic Species 17-Like Strain

Jesús Rodríguez-Baño, Sara Martí, Anna Ribera, Felipe Fernández-Cuenca, Lenie Dijkshoorn, Alexandr Nemec, Miquel Pujol and Jordi Vila

Updated information and services can be found at: http://jcm.asm.org/content/44/4/1587

\textbf{REFERENCES}

This article cites 16 articles, 9 of which can be accessed free at: http://jcm.asm.org/content/44/4/1587#ref-list-1

\textbf{CONTENT ALERTS}

Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more»

Information about commercial reprint orders: http://jcm.asm.org/site/misc/reprints.xhtml
To subscribe to another ASM Journal go to: http://journals.asm.org/site/subscriptions/
Nosocomial Bacteremia Due to an As Yet Unclassified Acinetobacter Genomic Species 17-Like Strain

Jesús Rodríguez-Baño,1 Sara Martí,2 Anna Ribera,2 Felipe Fernández-Cuencaa,3 Lenie Dijkshoorn,4 Alexandr Nemec,5 Miquel Pujol,6 and Jordi Vila2*

Division of Infectious Diseases, University Hospital Virgen Macarena, Avda. Dr. Fedriani, 3, 41071 Seville, Spain;1 Department of Microbiology, Centre for Biomedical Diagnosis, Hospital Clinic, IDIBAPS, School of Medicine, University of Barcelona, Villarroel, 170, 08036 Barcelona, Spain;2 Department of Microbiology, School of Medicine, University of Seville, Avda. Dr. Fedriani, 3, 41071 Seville, Spain;3 Department of Infectious Diseases, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands;4 Centre of Epidemiology and Microbiology, National Institute of Public Health, Sroňová, Prague, Czech Republic;5 and Department of Infectious Diseases, Hospital of Bellvitge, Feixa Llarga, s/n, 08901 L’Hospitalet, Barcelona, Spain.

Received 15 September 2005/Returned for modification 15 October 2005/Accepted 27 January 2006

We describe a case of bacteremia due to an as yet unclassified Acinetobacter genomic species 17-like strain. The recognition of this microorganism as non-Acinetobacter baumannii may have important epidemiological implications, as it relieves the hospital of the implementation of barrier precautions for patients infected or colonized as may be necessary with a multiresistant A. baumannii epidemic.

CASE REPORT

A 49-year-old man was admitted to a hospital in Barcelona (Spain) on 29 July 2000 because of L2-L3-L4 vertebral fractures as a consequence of a car accident. The patient was a heavy smoker (60 cigarettes a day) and consumed >20 g of alcohol daily. Several days later, renal insufficiency, ascites, and generalized edema developed. A diagnosis of hepatic insufficiency (probably related to alcoholic liver disease) with hepatorenal syndrome was made. On deterioration of the condition of the patient 1 month later, he was transferred to Hospital Bellvitge, also in Barcelona, where repeated paracenteses were performed and intravenous albumin administered, with some improvement. During hospitalization, the patient received piperacillin-tazobactam for primary bacteremia due to Pseudomonas aeruginosa over 15 days and ceftriaxone as empirical treatment for a low-grade fever, which was discontinued after negative blood cultures were obtained. Sixty days after admission, the patient presented an acute picture of fever with chills and hypotension, without focal signs or symptoms. Piperacillin-tazobactam was again started, a peripheral catheter (that had been in place for 8 days) was removed, and hemodialysis was begun due to worsened renal insufficiency. Two consecutive blood cultures were processed with an interval of 2 h. Both blood cultures yielded a gram-negative rod that was identified as Acinetobacter baumannii in the local laboratory and Acinetobacter genomic species 17 by amplified ribosomal DNA restriction analysis (ARDRA) (5) and 16S rRNA gene sequence analysis. However, the genomic fingerprint obtained by amplified fragment length polymorphism (AFLP) analysis could not be identified by comparison to those of >200 reference strains (see below). Ceftriaxone was substituted for piperacillin-tazobactam, as the organism was susceptible to the former. The bacteremic episode was resolved. Renal biopsy showed a diagnosis of immunoglobulin A mesangial glomerulonephritis with extracapillary reaction. The patient was discharged 5 months after admission. He died 2 months later as a consequence of liver failure with metabolic encephalopathy and gastrointestinal bleeding.

The genus Acinetobacter has a complex taxonomy with up to 32 described named and unnamed genomic species (3, 14, 16). Reliable identification of Acinetobacter strains to species level is difficult and requires the use of molecular methods or a combination of genotypic and phenotypic methods (14). The species most frequently isolated from clinical samples are A. baumannii and Acinetobacter genomic species 3 and 13TU which, together with the environmental species Acinetobacter calcoaceticus, are combined in the so-called A. calcoaceticus-A. baumannii complex. The epidemiology and clinical relevance of Acinetobacter baumannii has been extensively studied (1), but there is scarce information about the epidemiology and clinical relevance of other, rarely isolated species. This is partly due to the lack of easy methods for species identification. Here we describe a case of bacteremia due to a strain identified by 16S rRNA gene sequence analysis as Acinetobacter genomic species 17-like but which could not be classified to any species by AFLP analysis.

The strain (Ac209, LUH8320) was sent to the reference laboratory (Hospital Clinic, Barcelona, Spain) for possible inclusion in the GEIH Ab-2000 project, a nationwide cohort study of all cases of A. baumannii colonization or infections in Spain performed during November 2000. The specific meth-
odology of the study and some results have been published elsewhere (8, 17). In the Laboratory of Microbiology of the Hospital Clinic in Barcelona, Spain, and in the Department of Infectious Diseases of the Leiden University Medical Center, the strain was identified as an unnamed genomic species 17 using ARDRA. The profile, consisting of the combination of restriction patterns 1, 2, 1, 2, and 3 generated with the respective enzymes CfoI, AluI, MboI, Rsal, and MspI, together with BsmAI pattern 2 and with BfaI pattern 4, identified the organism as Acinetobacter genomic species 17 strains. With 16S rRNA gene sequence analysis, the microorganisms had a sequence similarity of 99.09% to Acinetobacter genomic species 17. With the high-resolution genomic fingerprinting analysis using AFLP, the isolate did not cluster at or above the 50% level with the reference strains of any described (genomic) species and was thus considered an as yet undescribed species (15). Further phenotypic studies were performed according to the method of Bouvet and Grimont (4) with minor modifications (14). The strain showed hemolytic activity and produced gelatinase, while it did not acidify Hugh-Leifson medium with d-glucose. It grew at 37°C but not at 44°C in brain heart infusion broth. Its carbon source utilization profile was different from those of all of the 32 Acinetobacter strains described (5, 6, 8, 14). The most notable feature was its ability to grow on histamine, a feature reported so far only in strains of the nonpro-

(continued)
