Publication:
Advanced Online Survival Analysis Tool for Predictive Modelling in Clinical Data Science

dc.contributor.authorMontes-Torres, Julio
dc.contributor.authorSubirats, Jose Luis
dc.contributor.authorRibelles, Nuria
dc.contributor.authorUrda, Daniel
dc.contributor.authorFranco, Leonardo
dc.contributor.authorAlba, Emilio
dc.contributor.authorJerez, Jose Manuel
dc.contributor.authoraffiliation[Montes-Torres, Julio] Univ Malaga, Dept Comp Sci, Malaga, Spain
dc.contributor.authoraffiliation[Luis Subirats, Jose] Univ Malaga, Dept Comp Sci, Malaga, Spain
dc.contributor.authoraffiliation[Urda, Daniel] Univ Malaga, Dept Comp Sci, Malaga, Spain
dc.contributor.authoraffiliation[Franco, Leonardo] Univ Malaga, Dept Comp Sci, Malaga, Spain
dc.contributor.authoraffiliation[Manuel Jerez, Jose] Univ Malaga, Dept Comp Sci, Malaga, Spain
dc.contributor.authoraffiliation[Luis Subirats, Jose] Yachay Tech Univ, Urcuqui, Imbabura, Ecuador
dc.contributor.authoraffiliation[Ribelles, Nuria] Virgen de la Victoria Univ Hosp, Malaga, Spain
dc.contributor.authoraffiliation[Alba, Emilio] Virgen de la Victoria Univ Hosp, Malaga, Spain
dc.contributor.authoraffiliation[Montes-Torres, Julio] Malaga Biomed Res Inst IBIMA, Malaga, Spain
dc.contributor.authoraffiliation[Luis Subirats, Jose] Malaga Biomed Res Inst IBIMA, Malaga, Spain
dc.contributor.authoraffiliation[Ribelles, Nuria] Malaga Biomed Res Inst IBIMA, Malaga, Spain
dc.contributor.authoraffiliation[Urda, Daniel] Malaga Biomed Res Inst IBIMA, Malaga, Spain
dc.contributor.authoraffiliation[Franco, Leonardo] Malaga Biomed Res Inst IBIMA, Malaga, Spain
dc.contributor.authoraffiliation[Alba, Emilio] Malaga Biomed Res Inst IBIMA, Malaga, Spain
dc.contributor.authoraffiliation[Manuel Jerez, Jose] Malaga Biomed Res Inst IBIMA, Malaga, Spain
dc.contributor.funderMICINN-SPAIN (Spanish Government)
dc.contributor.funderJunta de Andalucia
dc.contributor.funderFEDER funds (European Union)
dc.date.accessioned2023-02-12T02:22:18Z
dc.date.available2023-02-12T02:22:18Z
dc.date.issued2016-08-17
dc.description.abstractOne of the prevailing applications of machine learning is the use of predictive modelling in clinical survival analysis. In this work, we present our view of the current situation of computer tools for survival analysis, stressing the need of transferring the latest results in the field of machine learning to biomedical researchers. We propose a web based software for survival analysis called OSA (Online Survival Analysis), which has been developed as an open access and user friendly option to obtain discrete time, predictive survival models at individual level using machine learning techniques, and to perform standard survival analysis. OSA employs an Artificial Neural Network (ANN) based method to produce the predictive survival models. Additionally, the software can easily generate survival and hazard curves with multiple options to personalise the plots, obtain contingency tables from the uploaded data to perform different tests, and fit a Cox regression model from a number of predictor variables. In the Materials and Methods section, we depict the general architecture of the application and introduce the mathematical background of each of the implemented methods. The study concludes with examples of use showing the results obtained with public datasets.
dc.description.versionSi
dc.identifier.citationMontes-Torres J, Subirats JL, Ribelles N, Urda D, Franco L, Alba E, et al. Advanced Online Survival Analysis Tool for Predictive Modelling in Clinical Data Science. PLoS One. 2016 Aug 17;11(8):e0161135.
dc.identifier.doi10.1371/journal.pone.0161135
dc.identifier.issn1932-6203
dc.identifier.unpaywallURLhttps://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0161135&type=printable
dc.identifier.urihttp://hdl.handle.net/10668/19156
dc.identifier.wosID381487600062
dc.issue.number8
dc.journal.titlePlos one
dc.journal.titleabbreviationPlos one
dc.language.isoen
dc.organizationInstituto de Investigación Biomédica de Málaga-IBIMA
dc.organizationHospital Universitario Virgen de la Victoria
dc.provenanceRealizada la curación de contenido 07/08/2025.
dc.publisherPublic library science
dc.relation.projectIDTIN2014-58516-c2-1-R
dc.relation.projectIDTIN2010-16556
dc.relation.projectIDP08-TIC-4026
dc.relation.publisherversionhttps://dx.plos.org/10.1371/journal.pone.0161135
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectDistributions
dc.subjectCancer
dc.subjectTests
dc.subject.decsAnálisis de supervivencia
dc.subject.decsAprendizaje automático
dc.subject.decsModelado predictivo
dc.subject.decsRedes neuronales artificiales
dc.subject.decsRegresión de Cox
dc.subject.decsInvestigación biomédica
dc.subject.meshSurvival Analysis
dc.subject.meshMachine Learning
dc.subject.meshPredictive Modeling
dc.subject.meshArtificial Neural Networks
dc.subject.meshCox Regression
dc.subject.meshBiomedical Research
dc.titleAdvanced Online Survival Analysis Tool for Predictive Modelling in Clinical Data Science
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number11
dc.wostypeArticle
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Montes-Torres_AdvancedOnline.pdf
Size:
3.19 MB
Format:
Adobe Portable Document Format