Please use this identifier to cite or link to this item:
Title: Intestinal anti-inflammatory effects of RGD-functionalized silk fibroin nanoparticles in trinitrobenzenesulfonic acid-induced experimental colitis in rats.
Authors: Rodriguez-Nogales, Alba
Algieri, Francesca
De Matteis, Laura
Lozano-Perez, A Abel
Garrido-Mesa, Jose
Vezza, Teresa
de la Fuente, J M
Cenis, Jose Luis
Gálvez, Julio
Rodriguez-Cabezas, Maria Elena
Keywords: RGD;TNBS rat colitis;inflammatory bowel disease;nanoparticles;silk fibroin
metadata.dc.subject.mesh: Animals
Anti-Inflammatory Agents
Disease Models, Animal
Intestinal Mucosa
Neutrophil Infiltration
Nitric Oxide Synthase Type II
Rats, Wistar
Trinitrobenzenesulfonic Acid
Issue Date: 10-Nov-2016
Abstract: Current treatment of inflammatory bowel disease is based on the use of immunosuppressants or anti-inflammatory drugs, which are characterized by important side effects that can limit their use. Previous research has been performed by administering these drugs as nanoparticles that target the ulcerated intestinal regions and increase their bioavailability. It has been reported that silk fibroin can act as a drug carrier and shows anti-inflammatory properties. This study was designed to enhance the interaction of the silk fibroin nanoparticles (SFNs) with the injured intestinal tissue by functionalizing them with the peptide motif RGD (arginine-glycine-aspartic acid) and to evaluate the intestinal anti-inflammatory properties of these RGD-functionalized silk fibroin nanoparticles (RGD-SFNs) in the trinitrobenzenesulfonic acid (TNBS) model of rat colitis. SFNs were prepared by nanoprecipitation in methanol, and the linear RGD peptide was linked to SFNs using glutaraldehyde as the crosslinker. The SFNs (1 mg/rat) and RGD-SFNs (1 mg/rat) were administered intrarectally to TNBS-induced colitic rats for 7 days. The SFN treatments ameliorated the colonic damage, reduced neutrophil infiltration, and improved the compromised oxidative status of the colon. However, only the rats treated with RGD-SFNs showed a significant reduction in the expression of different pro-inflammatory cytokines (interleukin [IL]-1β, IL-6, and IL-12) and inducible nitric oxide synthase in comparison with the TNBS control group. Moreover, the expression of both cytokine-induced neutrophil chemoattractant-1 and monocyte chemotactic protein-1 was significantly diminished by the RGD-SFN treatment. However, both treatments improved the intestinal wall integrity by increasing the gene expression of some of its markers (trefoil factor-3 and mucins). SFNs displayed intestinal anti-inflammatory properties in the TNBS model of colitis in rats, which were improved by functionalization with the RGD peptide.
metadata.dc.identifier.doi: 10.2147/IJN.S116479
Appears in Collections:Producción 2020

Files in This Item:
File SizeFormat 
PMC5108622.pdf1,15 MBAdobe PDFView/Open

This item is protected by original copyright

This item is licensed under a Creative Commons License Creative Commons