Please use this identifier to cite or link to this item:
http://hdl.handle.net/10668/3670
Title: | Harnessing the Endogenous Plasticity of Pancreatic Islets: A Feasible Regenerative Medicine Therapy for Diabetes? |
Authors: | Lorenzo, Petra I. Cobo-Vuilleumier, Nadia Martín-Vázquez, Eugenia López-Noriega, Livia Gauthier, Benoit R. |
metadata.dc.contributor.authoraffiliation: | [Lorenzo,PI; Cobo-Vuilleumier,N; Martín-Vázquez,E; López-Noriega,L; Gauthier,BR] Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain. [Gauthier,BR] Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain. |
Keywords: | Diabetes;Regeneration;β-cell heterogeneity;Transdifferentiation;Redifferentiation;Singlecell transcriptomics;PAX4;LRH-1/NR52A;HMG20A;Diabetes mellitus;Regeneración;Transdiferenciación;Células secretoras de insulina;Homeostasis |
metadata.dc.subject.mesh: | Medical Subject Headings::Organisms::Eukaryota::Animals Medical Subject Headings::Phenomena and Processes::Cell Physiological Phenomena::Cell Physiological Processes::Cell Transdifferentiation Medical Subject Headings::Diseases::Nutritional and Metabolic Diseases::Metabolic Diseases::Glucose Metabolism Disorders::Diabetes Mellitus::Diabetes Mellitus, Type 1 Medical Subject Headings::Organisms::Eukaryota::Animals::Chordata::Vertebrates::Mammals::Primates::Haplorhini::Catarrhini::Hominidae::Humans Medical Subject Headings::Chemicals and Drugs::Hormones, Hormone Substitutes, and Hormone Antagonists::Hormones::Peptide Hormones::Pancreatic Hormones::Insulins Medical Subject Headings::Disciplines and Occupations::Health Occupations::Medicine::Regenerative Medicine Medical Subject Headings::Chemicals and Drugs::Carbohydrates::Monosaccharides::Hexoses::Glucose::Blood Glucose Medical Subject Headings::Phenomena and Processes::Chemical Phenomena::Biochemical Phenomena::Biochemical Processes::Transcription, Genetic::Transcriptome Medical Subject Headings::Phenomena and Processes::Cell Physiological Phenomena::Cell Physiological Processes::Cell Transdifferentiation Medical Subject Headings::Chemicals and Drugs::Chemical Actions and Uses::Pharmacologic Actions::Physiological Effects of Drugs::Hypoglycemic Agents Medical Subject Headings::Phenomena and Processes::Genetic Phenomena::Phenotype Medical Subject Headings::Anatomy::Endocrine System::Enteroendocrine Cells::Insulin-Secreting Cells |
Issue Date: | 19-Apr-2021 |
Publisher: | MDPI |
Citation: | Lorenzo PI, Cobo-Vuilleumier N, Martín-Vázquez E, López-Noriega L, Gauthier BR. Harnessing the Endogenous Plasticity of Pancreatic Islets: A Feasible Regenerative Medicine Therapy for Diabetes? Int J Mol Sci. 2021 Apr 19;22(8):4239. |
Abstract: | Diabetes is a chronic metabolic disease caused by an absolute or relative deficiency in functional pancreatic β-cells that leads to defective control of blood glucose. Current treatments for diabetes, despite their great beneficial effects on clinical symptoms, are not curative treatments, leading to a chronic dependence on insulin throughout life that does not prevent the secondary complications associated with diabetes. The overwhelming increase in DM incidence has led to a search for novel antidiabetic therapies aiming at the regeneration of the lost functional β-cells to allow the re-establishment of the endogenous glucose homeostasis. Here we review several aspects that must be considered for the development of novel and successful regenerative therapies for diabetes: first, the need to maintain the heterogeneity of islet β-cells with several subpopulations of β-cells characterized by different transcriptomic profiles correlating with differences in functionality and in resistance/behavior under stress conditions; second, the existence of an intrinsic islet plasticity that allows stimulus-mediated transcriptome alterations that trigger the transdifferentiation of islet non-β-cells into β-cells; and finally, the possibility of using agents that promote a fully functional/mature β-cell phenotype to reduce and reverse the process of dedifferentiation of β-cells during diabetes. |
URI: | http://hdl.handle.net/10668/3670 |
metadata.dc.relation.publisherversion: | https://www.mdpi.com/1422-0067/22/8/4239/htm |
metadata.dc.identifier.doi: | 10.3390/ijms22084239 |
ISSN: | 1422-0067 (Online) |
Appears in Collections: | 01- Artículos - CABIMER. Centro Andaluz de Biología Molecular |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Lorenzo_HarnessingTheEndogenous.pdf | Revisión | 3,34 MB | Adobe PDF | View/Open |
This item is protected by original copyright |
This item is licensed under a Creative Commons License